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Electronic structure of an ion in liquid metallic lithium 
treated as a nucleus-electron mixture 
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Department of Physics, Japan Atomic Energy Research Institute, Tokai, Ibaraki, 319-1 1, 
Japan 

Received 21 May 1990 

Abstract. A set of integral equations for determining the liquid and electronic ion structures 
in a liquid metal have been derived by treating a liquid metal as a nucleus-electron mixture. 
By these integral equations with the atomic number as the only input, an electronic excited 
state of an ion in a liquid metal can be determined in a self-consistent way with the ion and 
valence-electron density distributions around it. It is shown that our integral equations lead 
to a liquid-state version of the spherical-solid model proposed by Almbladh and von Barth 
to treat the spectroscopic problem in a solid. The integral equations combined with Slater’s 
transition state method are applied to evaluate the K-edge position of a liquid metallic 
lithium: the value 51.36 eV is obtained at 470 K, which is compared with the experimental 
one of 51.26 eV. Thus it is ascertained that our integral equations can determine precisely 
the electronic structure of an ion as well as the liquid structure without the use of any 
information other than the atomic number. 

1. Introduction 

Calculating the electronic states of an atom immersed in a liquid metal is a complex 
problem when compared to the calculation of the electronic structure of an atom in 
vacuum, since the atomic structure must be determined to be consistent with the liquid 
structure which is specified by the valence-electron density and ion density distributions 
around the atom under investigation. Similarly, a constituent ion of a liquid metal 
behaves as a dissolved impurity in a liquid metal when its core electrons are in an excited 
state, or especially when it contains core holes so as to have a different ionic charge from 
constituent ions (we will refer to this ion as the tagged ion). Therefore, in treating the 
spectroscopic problem concerning an ion in a liquid metal, the internal electronic 
structure of the excited ion (tagged ion) is to be determined in a consistent way with the 
screening due to the surrounding electrons and ions, of which the effects are represented 
by the radial distribution function ( RDF) between valence-electron and tagged ion, geT( r ) ,  
and the RDF between constituent ion and tagged ion, &T(r). That is, the spectroscopic 
calculation of a liquidmetal has to combine two problems: the ‘external’ one to determine 
the liquid structure, and the ‘internal’ one to calculate the atomic structure under this 
circumstance. As a consequence of this difficulty, to date there is no standard approach 
to the spectroscopic calculation for a liquid metal. 

Previously, by applying the density functional theory to a liquid metal modelled as 
a nucleus-electron mixture, we have derived a set of integral equations which provide 
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both the liquid structure as an electron-ion mixture, and the internal electronic structure 
of a constituent ion at the same time in a self-consistent manner (Chihara 1985). 
Recently, we have applied this formulation to a liquid metallic lithium and obtained the 
RDFS at two temperatures with the use of the atomic number ZA as the only input data: 
the structure factors derived from our RDFS show excellent agreement with experimental 
results (Chihara 1989). At this stage, it is of interest to examine how exactly our 
formulation can describe the internal electronic structure (atomic structure) of an ion in 
a liquid metal in addition to the liquid structure. For this purpose we apply in the present 
paper our formulation to the calculation of the threshold energy of the K-edge observed 
in the soft x-ray emission and absorption spectra in a liquid metallic lithium: the K- 
emission and absorption spectra are observed when an electron in the valence state 
drops down to fill a hole in the K-shell (Is level) and an electron is transferred from the 
K-shell to a conduction state, respectively. 

Almbladh and von Barth (1976) proposed the spherical-solid model (SSM) to calculate 
electronic states of an atom immersed in a solid. In this model, the potential felt by an 
electron caused by the ions around the atom under investigation is constructed by the 
spherical average of the ion potentials where the electron-ion interaction is assumed to 
be a pseudopotential. The model has been applied successfully to a variety of impurity 
problems by Manninen and Nieminen (1979, 1981), Perrot (1977a, 1977b) and Perrot 
and Rasolt (1982). Moreover, Fairlie and Greenwood (1983) modified the SSM to be 
applicable to a liquid metal by expressing the surrounding ion configuration in terms of 
the RDF around the impurity. In this respect, our method is shown to be identical to that 
of Fairlie and Greenwood except that in our method the pseudopotential and the 
interaction between ion and tagged particle (impurity) can be obtained self-consistently 
from the atomic number as the only input data, as will be mentioned later. Furthermore, 
the spherical-solid model reduces to the jellium-vacancy model when we introduce two 
further approximations: first the effect of the surrounding ions is replaced by the jellium 
with a spherical vacancy having the Wigner-Seitz radius RWs at the centre, and secondly 
a pseudopotential is approximated as the pure coulombic potential -ZIe2/r with the 
ionic charge ZI. This simple model has been applied to the calculation of electronic states 
of an impurity in a solid by various investigators (for example, Nieminen and Puska 
(1980, 1982) and Rantala (1983)). This model can give a fairly good description of the 
electronic structure of an impurity in a solid where the surrounding ions do not relax 
significantly when the internal electronic state of the central impurity changes. However, 
this model may not be appropriate to treat an impurity in a liquid for some situation 
where the central impurity with core holes, for example, rearranges the surrounding ion 
distribution from gIlmp(r) to gIT(r) when its ionic charge Z,,, becomes ZT (where Z,,, # 
ZT). In the next section, the formulation to treat the spectroscopy of a liquid metal 
is presented in conjunction with integral equations for determining the usual liquid 
structure, which provide necessary data for the spectroscopic calculation. Calculated 
results for the K-edge in liquid Li are presented in section 3. The final section is devoted 
to a discussion. 

2. Formulation 

Previously, it has been shown on the basis of the nucleus-electron mixture model that 
the ion-ion and electron-ion RDFS are given by the following set of equations (Chihara 
1985) 

gII(r) = exP(-BuT:f(r>) (1) 
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In the above, np(r l  U )  is the valence-electron part of the total electron density dis- 
tribution of the non-interacting electron gas with density ne under external potential 
U ( r ) ,  which is calculated by solving the wave equation 

[-(fi2/2")VZ + LJ(T)IQ)/(Y) = &/CP/(T)  

fi;(ri~) = ICf(E/ ) /q / ( r ) i2  = nzb(rIU) + n p ( r I U )  

f ( E )  = kXP[B(& - P 9 l  + 

( 3 )  

(4) 

in the form 

/ 

with 

(5  1 
in conjunction with the bound electron density n:'(rI U) .  Effective interactions in (1) 
and (2) are represented as 

uy(4 = - L , W / B  - B,(r) /B (6) 
with 

in terms of the bridge functions Bjj(r)  and the direct correlation functions (DCF) C,(r). 
The bare electron-electron and the bare electron-ion interactions in ( 6 )  are given by 
the pure coulombic u,,(r) = e2/r and 

u,,(r) = -Z,e2/r + u,,(lr - r' i ) n ~ ( r ' i N )  d r '  

(8) 

J 
+ Pxc(n:(rlN + 4)  - P x c ( n 3  

respectively, with the use of the bound-electron density n:(r lN)  and the exchange- 
correlation potential pxc. Here, the DCF C,,(r) is approximated by that of the jellium 
model in terms of the local-field correction factor Gee( Q ) ,  and the ion-ion bridge function 
BIl(r) by that of the Percus-Yevick equation for the hard-spheres by neglecting B,,(r). 
Under these approximations, the above equations constitute a set of self-consistent 
equations forg,,(r) andg,,(r) (C,,(r) and CeI(r ) )  on behalf of the Ornstein-Zernike (oz) 
relations for the ion-electron mixture 

s Q ( B a f ( r ) )  E (xOQ)a%Q(,f(r)) = (&)" J e'Q.rf(r) d r  (11) 

for an arbitrary real number a. 
We have applied this set of integral equations to a liquid metallic lithium and have 

obtained the ion-ion structure factors and the RDFS, which show good agreement with 
the experimental results (Chihara 1989). These integral equations can give the bound- 
electron density distribution around the ion in a liquid metal as well as the ion-ion and 
electron-ion RDFS, but there is no physical meaning for the bound energy levels obtained 
from (3) with U ( r )  = u:if(r), since these equations are derivedfrom the densityfunctional 
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theory. Therefore, some method is necessary to extract the spectroscopic information 
from these integral equations. A bound level (1s) of a Li ion in a liquid metal can be 
observed as the K-edge in the soft x-ray experiments. The removal energy, I, of one 1s 
electron from the ion in a liquid metallic lithium is defined by the difference of the total 
energies between the initial state with an occupation number nls = 2 and a final nls = 1 
state. Slater (1974) suggested that this energy difference can be calculated approximately 
from the one-electron energy level E ~ ,  in a transition state, which is defined as a state 
where the occupation number is halfway between those of the initial and final states, as 
is described by the relation 

I =  E[nI, = 21 - E[n,, = 11 &ls(n) d n  ~ l ~ ( t ~ 1 ,  = 1.5). (12) i,’ 
In order to treat an ion in the transition state (the tagged lithium ion), we need a set 

of integral equations determining geT(r), the RDF between the electron and the tagged 
ion with ionic charge ZT = 1.5, and gIT(r)-the RDF between constituent ion and tagged 
ion, The integral equations to treat a tagged ion with charge 2, in a liquid metal have 
been obtained in the following forms (Chihara 1987): 

geT(r) = n ? ( r I  u:fir>/n8 (13) 

gIT = exp(-pui!(r)) (14) 

with effective interactions 
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In the above expressions, the DCFS CeI(r) and CII(r) involved in r e T ( r )  and r[T(r) were 
already obtained when the RDFS geI(r )  and gII(r) were determined by solving ( 1 )  and (2) .  
It is difficult to solve (21) and (22) directly for the case of a liquid metallic lithium where 
the plasma parameter r and the electron density paramenters, rs ,  are so large that the 
coupling among ions and electrons is very strong. To circumvent this difficulty, we 
rewrite (22) into the form of the equations for a tagged particle immersed in a quasi- 
one-component liquid where the existence of electrons is eliminated by constructing an 
effective interaction between ion and tagged particle Uf!(r) as follows: 

- 
CIr(r) = exp(-PG!(r) + Y I T ( ~ )  + BIT(r)) - 1 - Y I T ( ~ )  

PUf?(Q) E P4nZ1Zre2/Q2 - cIe<Q)ceT(Q>n8X$/(l - n&Cee(Q)X$) 

Y I T ( Q )  = n b c I T ( Q ) c I I < Q > / ( l  - n b c ~ ( Q ) )  

(23) 

(24) 

(25) 

(26) 

where 

with new functions 

~ I I ( Q )  E CII(Q) + nRICeI(Q>12X~/(l - n;cee(Q)X;) 

CIT(Q) C I T ( Q )  + n8cIe(Q)ceT<Q>X$/(l - n;cee(Q)X$)* (27) 

In this circumstance, the bound-electron levels in the tagged ion are obtained by solving 
a wave equation under the external potential 

u $ ( r )  = -ZAe2/r  + uee(lr - r’l)nk(r’i T )  dr’  

(28) 

J 
+ P X C ( ~ ~ ( ~ ~  T ,  + .8) - Pxc(~ ; )  - r e T ( r ) / P  

which involves the influence of ions and electrons around it through reT(r) defined in 

At this point, it should be mentioned that the effective potential (28) is rewritten by 
(16). 

using the approximation 

As a result, this effective potential can be regarded as that of the SSM proposed by 
Almbladh and von Barth (1976) in the modified version to a liquid metal, since the DCF 
-CeI(r)/Pplays the role of apsuedopotential. In other words, this approach is equivalent 
to the treatment of Fairlie and Greenwood (1983) except that in our method all quantities 
such asgIT(r) and the pseudopotential - CeI(r) /p  can be given in a self-consistent manner 
without the use of any other information than the atomic number. Furthermore we can 
obtain the jellium-vacancy model by making the following two approximations in (30): 
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0 1 2 3 4 
r / a  

Figure 1. The ion density distributions around tagged ions with ionic charges ZT = 2,1.5 and 
1, denoted by the chain, broken and full curves, respectively. The distance from the origin 
is represented in units of a,  the mean distance between ions. 

first, the neglect of the relaxation of ions surrounding the tagged particle during the 
emission and absorption processes, which is represented byg,,(r) = gII(r) = O(r - Rws), 
in terms of the step function O(r - Rws) with the Wigner-Seitz radius Rws; and secondly, 
the random-phase approximation to the electron-ion DCF, - C,,(r)/p = -Zle2/r. 

It is important that the spin-polarisation effect is incorporated into the exchange- 
correlation potential for core electrons, since it brings about a significant difference in 
the evaluation of the excitation energy levels of the ion. Here, we use the local spin- 
density approximation (LSDA) to the potential only for the bound electrons 

u$’(r) = - Z , e 2 / r  + uec( l r  - r’l)nk(r’lT) dr’  ! 
with m:(r\ T )  = nk’(r1 T )  - n:-(rl T )  in terms of the up-spin and down-spin densities. 
However, the spin-polarisation effect is not considered in treating the valence electrons, 
that is, the potential for the valence electrons is taken to be of the LDA form as in (8). 

3. Calculation of the K-edge in a liquid metallic lithium 

The 1s bound-level of Li in a liquid metal can be observed as the K-edge position in the 
soft x-ray spectra. The position of the K-edge can be determined by the calculation of 
the 1s level of a tagged ion in the transition state ZT = 1.5 in a liquid metallic Li as 
mentioned in the previous section. In this calculation, we use the same approximations 
made in the determination of the RDFS in a liquid metallic lithium (Chihara 1989). The 
bridge function Bl,(r) is approximated by that of the Percus-Yevick equation for the 
hard spheres of diameter 0 with the packing fraction q = xna3/6 and BIT(r) = Bll(r) .  
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1 2 

r / a  
Figure 2. The valence-electron distributions around tagged ions with ionic charges 2, = 2. 
1.5 and 1: the chain, broken and full curves show the electron density distributions around 
ions with Zr  = 2,1.5 and 1 under the ion distributionscorresponding to figure 1, respectively. 
The short dashed curve displays the electron density distribution gcT(r) around an ion in the 
transition state n, ,  = 1.5 under the fixed ion distribution as g l . , ( r )  = gl,(r), while the full 
circles denote g,,(r) for the transition state calculated by the jellium-vacancy model. 

The electron-electron DCF C,,(r) is approximated by that of the jellium model with the 
use of the local-field correction proposed by Geldart and Vosko (1966). The LDA and 
LSDA to the exchange-correlation potential are taken to be of the form proposed 
by Gunnarsson and Lundqvist (1976). Under these approximations, a set of integral 
equations (21)-(28) are solved for the tagged ions with 2, = 1.5 (the transition state for 
the K-edge emission and absorption processes) and Z, = 2, which corresponds to the 
tagged ion with one core-hole in the K-shell. The ion density distribution, gIT(r), and 
the electron density distribution, geT(Y), around the tagged ion with Z = 1.5 at a tem- 
perature of 470 K are shown in figures 1 and 2 by the broken curves, respectively, while 
those for ZT = 2 are represented by the chain curves; for comparison, the ion-ion and 
electron-ion RDFS, gll(r) and gcl(r), of liquid Li are exhibited by the full curves in figures 
1 and 2, respectively. 

When a core electron of an ion in a liquid metal is transferred to a conduction 
state and the core-hole lifetime is sufficiently longer than the relaxation time for the 
surrounding ions to reach an equilibrium density distribution around i t ,  the K-emission 
edge caused by a conduction electron falling into this hole must be determined under 
the constraint that the RDF gll(r) has been changed to gIT(r) with ZT = 2 during the 
process to create a core-hole. However, if the core-hole lifetime is shorter than the 
relaxation time of the ions, we can use gll(r) to describe the ion distribution around the 
tagged ion which radiates the K-emission spectra. In this case, it is sufficient to take 
account of only the relaxation of the electron density distribution in the determination 
of the threshold energy of the K-emission; the short dashed curve in figure 2 shows the 
electron density distributiong,,(r) in the transition state with occupation number n,,, = 
0.5 and the fixed ion distribution glI(r) representing the ion distribution around the 
tagged ion. In this transition state, we obtain = -51.33 eV of which the absolute 
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value becomes the threshold energy for the K-emission, while the threshold energy is 
obtained as 51.36 eV in the transition state where the ion relaxation is considered by 
using &T(r) with ZT = 1.5. These two calculations do not yield a significant difference. 
If we adopt the jellium-vacancy model where the ion distribution around the tagged ion 
is fixed asgIT(r) = O(r - Rws) irrespective of Z,, we get the electron density distribution 
geT(r) around the tagged ion in the transition state nts+ = 0.5, as shown by the full circles 
in figure 2. The threshold energy in this environment is 51.51 eV; this value shows a 
good estimation for the K-edge position in spite of the simplicity of the calculation. 

On the other hand, Callcott in collaboration with Arakawa and Ederer (1977) and 
with Arakawa (1977) have observed the edge position of the K x-ray emission to be 
54.91 eVat493 K(themeltingpointofLiis453.7 K). Inthecomparisonofourcomputed 
results with the experimental values, it should be noted that the threshold energy 
determined from the soft x-ray emission and absorption experiments is measured from 
the Fermi energy level E ~ ,  while our calculated value is from the zero of the potential for 
electrons (the bottom of the band). As a result, the experimental value differs from the 
calculated one by the bandwidth, which is roughly estimated from the Fermi energy E,  
of a free electron gas with the density parameter rs of the conduction electrons in the 
system. In this connection, the band calculations by Lawrence (1971) and by Dagens 
and Perrot (1973) give the bandwidth = 3.65 and 3.54 eV, respectively, which show 
a great difference from the free electron value EF = 4.54 eV at rs = 3.308. On the other 
hand, from the soft x-ray spectra, Skinner (1940) obtained a bandwidth of 3.7 * 0.5 eV. 
In addition, McMullen (1970) has analysed the K emission spectra of Li observed by 
Arita and Sagawa (1969) to obtain a bandwidth of eF = 3.65 eV. Therefore, here we 
take the value of the bandwidth to be 3.65 eV; then the threshold energy from the bottom 
of the band can be evaluated as 54.91 - 3.65 = 51.26 eV. Consequently, our calculated 
values of 51.36 eV and 51.33 eV (obtained when grI(r) is not changed) are shown to be 
in excellent agreement with this experimental result, whether the relaxation effect of 
the surrounding ions is taken account of, or not. 

It should be noted that the central tagged ion is neutralised in the whole space by 
pushing away the surrounding ions and by accumulating the conduction electrons so as 
to fulfil the neutrality relation 

TheusualionwithZ, = linliquidLiat470 Ksatisfiestherelation: 1 = -(-0.97) + 0.03, 
which shows that the central ion is screened mainly by the removed ions gII(r) rather 
than by collecting conduction electrons. On the other hand, the tagged ion with one 
core-hole is neutralised in such a way as to satisfy the relation: 2 = - 1.19 + 3.19, which 
means that the surrounding ions are attracted to the tagged ion so as to enhance the 
polarisation, and in consequence many conduction electrons are necessary to be piled- 
up so as to compensate for it as shown in figures 1 and 2 by the chain curves. The 
neutrality condition 1.5 = -(-0.03) + 1.47 is obtained in the transition state with the 
use of &T(r) with ZT = 1.5 to represent the ion distribution around the tagged ion; the 
central ion is screened almost by accumulated conduction electrons. When the ion 
distribution around the tagged ion is fixed as gII(r), the neutrality relation is satisfied as 
1.5 = -(-0.97) + 0.53, which is quite similar to the case of the jellium-vacancy: 1.5 = 
-(-1) + 0.5. 

In table 1, the temperature dependence of the edge position is shown at three 
temperatures, along with the results based on the jellium-vacancy model. Also, we have 
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Table 1. The temperature dependence of the K-edge position of Li calculated by the LSDA 

full calculation and the jellium-vacancy model, which are compared with the LDA results. 
The thermal expansion is represented by the variation of r, .  

Temperature (K) 470 595 125 
I ,  3.308 3.346 3.372 

~~ 

LSDA 51.36 51.53 51.67 
LSDA (Jellium) 51.51 51.69 51.84 
LDA 54.06 54.24 54.38 

calculated the threshold energies of the K-edge at these three temperatures with the use 
of the LDA and have included these in the same table; the edge position calculated by 
the use of the LDA does not show good agreement with the experimental value of 
51.26 eV. A similar situation is found in the calculation of the removal energy of the 1s 
electron from a free Li atom. When we use the LDA and LSDA formulae given by 
Gunnarsson and Lundqvist (1976) for this purpose, the transition-state technique yields 
the Is-electron removal energies, 67.52 and64.33 eV, forthe  and LSDA, respectively; 
these values are to be compared with the experimental one of 64.39 eV (Sevier (1979)). 
The temperature dependence of the K-edge position obtained by the jellium-vacancy 
model comes only from the variation of the conduction electron density due to the 
thermal expansion, which is specified by the density parameter rs.  Therefore, the tem- 
perature dependence obtained by our full calculation is also essentially of the same 
character to that of the jellium-vacancy model, since the ion configuration around 
the tagged ion does not have a significant influence on the K-edge position. For the 
comparison of our result for the temperature dependence with the experimental one, 
we need the precise experimental data for the temperature dependence of the band- 
width. 

4. Discussion 

When a core hole is created in an ion in a liquid metal and its lifetime is sufficiently long, 
it produces a change in the surrounding ion distribution fromg,,(r) intog,,(r) as is shown 
in figure 1. This situation is quite different from the case of a solid metal, where the ion 
configuration is so rigid that such a large rearrangement of the surrounding ions does 
not appear even when the ioniccharge of the central ion changes. It should be emphasised 
that our integral equation method with the aid of the transition-state technique can carry 
out the spectroscopic calculation by taking account of the change in the ionic distribution 
during an atomic process. Of particular importance is the fact that our method can give, 
in a self-consistent way, a pseudopotential for a tagged ion in any excited state in terms 
of the DCF - CCT(r)//3, which yields the effective interaction between ion and excited 
ion from equation (24); this contrasts with the usual pseudopotential method based on 
a pseudopotential for an atom in the ground state. If we use the R D F ~ , , ( ~ )  to describe 
the ion distribution around the tagged ion, &T(r) = gI,(r), even when the core hole is 
created and the ionic charge is changed, our method can still introduce the approximation 
that the relaxation effect of ions is neglected in the atomic process. When we introduce 
further approximations, glT(r) = O(r - RWs) and /3Ce,(r) = Zle2/r, our formulation 
reduces to the treatment based on the jellium-vacancy model. The edge position of the 
K-edge in liquid Li is evaluated by the above three approaches, and almost the same 
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values, 51.36, 51.33 and 51.51 eV are obtained at 470K, respectively; this may be 
attributed to the fact that the three electron distributions around the tagged ion, gCT(r),  
with ZT = 1.5 exhibit a fairly good coincidence among each other as is shown in figure 
2 ,  although the ionic distributions around the tagged particle are quite different in the 
above three treatments. It is interesting to see that the jellium-vacancy model gives a 
fairly good value of the K-edge position in spite of its simple calculational procedure. 

It is important for the exchange-correlation potential acting on core electrons to 
involve the spin polarisation effect (LSDA) instead of the LDA as table 1 exhibits; the LDA 
value for the K-edge position is quite different from the experimental one. Furthermore, 
choosing which approximation to the exchange-correlation potential should be used in 
the calculation is an important problem. For example, the LSDA of the Kohn-Sham form 
leads to a value of 50.18 eV to the K-edge position in liquid Li at 725 K, while that of the 
Gunnarson-Lundqvist form yields 51.67 eV; the difference between these values is 
greater than the variation of the K-edge when the temperature is changed from 470 to 
725 K. 

Already, our integral equation method, treating a liquid metal as a nucleus-electron 
mixture, has been proved to give the RDFS of liquid Li in excellent agreement with 
experimental results with the use of the atomic number as the only input (Chihara 1989). 
Here, it is shown that the same set of integral equations combined with the transition- 
state technique can give a good result for the electronic structure of an ion in liquid Li, 
as is examined by the comparison with the K-edge observed in the soft x-ray experiment. 
Thus, it is now ascertained that our integral equations can provide precisely both the 
liquid structure and the atomic structure of ion in a liquid metallic Li from the atomic 
number as the only input. A liquid metal can be thought of as one form of a high-density 
plasma. Therefore, our integral equations are expected to give a precise description of 
the ion-ion and electron-ion RDFS, as well as the atomic structure, of a high-density 
plasma where we have no exact knowledge except its atomic number. Also, our method 
can be applied to investigate the electronic structure of dissolved impurities in a liquid 
metal as was done by Fairlie and Greenwood (1983) for the case of Cl, F and 0 impurities 
in a Na liquid. 
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